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Stimulated by experimental observations of vortex merging, we compute a new family
of uniform-vorticity steady solutions of the Euler equations in two dimensions. In
experiments with two co-rotating vortices, one finds that, prior to the convective
merging phase, and the formation of vortex filaments, the initial pair diffuses into
a single structure (with two vorticity peaks) in the form of a symmetric ‘dumb-bell’.
In the present computations, our exploration of the existence of vortex solutions has
been guided by the streamline patterns of the co-rotating reference frame, and by
the simple concept that the vortex boundary must be one of these streamlines. By
varying the parameters which define the vortex patches, we find a family of vorticity
structures which pass from the limiting case of point vortices, through the case of
two equal co-rotating uniform vortices (as previously computed by Saffman & Szeto
1980; Overman & Zabusky 1982; Dritschel 1985), to the regime where the vortices
touch in the form of a dumb-bell. Further exploration of this family of solutions
leads to an elliptic vortex, which joins precisely to the local transcritical bifurcation
from elliptic vortices with n= 4 perturbation symmetry that was found by Kamm
(1987) and Saffman (1988). Finally, one reaches a limiting ‘cat’s-eye’ vortex patch of
two-fold symmetry (m = 2), which constitutes an extension to the limiting shapes of
m-fold symmetry (m > 2) found by Wu, Overman & Zabusky (1984).

1. Introduction
A great deal of attention has been paid, in previous years, to the problem of the

equilibrium solutions for a pair of equal uniform vortices as they rotate around one
another in irrotational fluid. The boundaries of these shapes were first determined in
1980 by Saffman & Szeto, and also by Zabusky (1980), Landau (1981), and Dritschel
(1985, 1995). A central result coming from these studies is that, if the vortex core
radius is sufficiently large, then stable equilibrium solutions do not exist. (This occurs
when R/b > 0.31, at some point prior to the two vortices touching, where R =

√
A/2π

is the equivalent core size of the vortex, of area A/2 and b is the distance between the
vortex centroids). Overman & Zabusky (1982) analysed the behaviour of perturbed
initial configurations for R/b > 0.3125, demonstrating that co-rotating vortices rapidly
deform, generate filaments and ultimately merge into a single structure. Many studies
have subsequently assumed that, once two separate vortices reach a certain size, this
theoretical result might signal the onset of merging of real vortices. In the studies
above, a family of equilibrium solutions was found, whose limiting case was given
as two distinctly non-circular vortices, which almost touch. However, experimental
results differ from this picture, and one actually finds that the two vortices diffuse
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(a)                                                                                     (b)

(c)                                                                                     (d )

Figure 1. Vorticity fields during the merging process of two co-rotating vortices, as seen
in a reference frame rotating with the vortex pair. These data are taken when the merging
process is in the diffusive stage (prior to the generation of filaments and the convective
merger stage, where vortices are pushed towards each other), and the two vortices undergo a
diffusive growth while keeping their distance constant. (a) t = 2.1 s; (b) t =6.3 s; (c) t = 9.8 s;
(d) t = 13.3 s. Vorticity contours levels are in steps of �ω = 0.05 s−1, with the lowest contour
level being ω = 0.15 s−1. Vorticity is counter clockwise. Re= Γ/ν = 530.

into a single symmetric rotating vortex (further described below), well before they
start merging.

In recent experimental studies (Meunier & Leweke 2001; Cerretelli & Williamson
2003), it has been found that, prior to the generation of filaments and convective
merger (the process where the vorticity peaks rapidly move towards each other),
two equal co-rotating vortices undergo a diffusive growth, while they rotate around
one another, keeping their separation distance constant. The typical evolution of the
vorticity field for this diffusive stage is shown in figure 1, where we employ a reference
frame rotating with the vortex pair. (An explanation of the use of the particle image
velocimetry (PIV) technique to determine vorticity, and the experimental arrangement
leading to these results, are found in Cerretelli & Williamson (2003). Of course, these
shapes represent a minimum vorticity contour level, and it is clear that very weak
vorticity will exist outside these shapes that makes a negligible contribution to the
merger; see Cerretelli & Williamson (2003)). Rather than remain as two separate
vortices, the vorticity diffuses into a single symmetric ‘dumb-bell’ shape (but which has
two peaks of vorticity), and at some point thereafter the mutual vortex deformation
leads to filamentation and vortex merging.

The principal vorticity dynamics can be usefully understood by employing a co-
rotating reference frame. In figure 2, we show only the principal regions of the flow
in such a reference frame, by extracting the separatrices of the co-rotating streamline
pattern. Here we define an inner core region; an inner recirculation region, where fluid
can travel around both vortices; and an outer recirculation region, where the fluid rota-
tion is opposite to the rotation within the cores. Such streamlines were computed
by Dritschel (1985) and by Melander, Zabusky & McWilliams (1988) for inviscid
vortices. In this work, following the recent study of Cerretelli & Williamson (2003),
we choose the nomenclature above, since we want to stress the distinction between
the inner region and the outer region, because the separatrix between these areas is
significant to the existence of equilibrium solutions.
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Figure 2. Diagram defining the regions of the flow field bounded by separatrices of the
co-rotating stream function.

In this study, motivated by our experimental observations, we search for uniform-
vorticity patches, using the simple physical concept that the boundaries of steady
vortex patches must also be streamlines of the co-rotating reference frame. By
observing the co-rotating set of streamlines in figure 2, one might suspect the existence
of not only a pair of uniform vortices as found in previous works (as represented
by streamline 1), but also the limiting case where the two vortices touch at a point
(streamline 2), as well as possibly such shapes as represented by streamline 3, namely
the dumb-bell shape. If such dumb-bells exist, as are found in experiment, then one
would deduce that the limiting shape will be the one that forms the separatrix 4
between the inner and outer flow regions. One can readily see that any shape larger
than the separatrix 4 will necessarily become deformed, producing filaments. We seek
the existence of such uniform-vorticity topologies suggested above, and their precise
shapes.

2. Equilibrium solutions to the Euler equations
In this paper, we obtain new equilibrium uniform-vorticity solutions to the Euler

equation numerically. For a steady vortex configuration rotating with angular velocity
Ω relative to the origin, the fluid velocity measured in a frame rotating at a rate Ω is
tangent to the vortex boundaries (Dritschel 1985). Physically, in the rotating reference
frame, it is straightforward to imagine that a vortex boundary of a steady vortex
configuration must be a streamline of the flow field. This is equivalent to saying that
the rotating-frame stream function must be constant on this boundary:

ψ(X, Y ) − 1
2
Ω(X2 + Y 2) = C (2.1)
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where (X, Y ) define points on the vortex boundary, and C is a constant. The stream
function of the flow is given by

ψ(x, y) =
ω

4π

∫ ∫
D

log[(x − x ′)2 + (y − y ′)2] dx ′ dy ′ = C (2.2)

where ω is the uniform vorticity of the patch D. This equation is obtained by solving
∇2ψ = ω in term of the Green function of the problem. The parameters C and Ω can
be determined as follows:

Ω = 2
ψ(XA, YA) − ψ(XB, YB)

X2
A + Y 2

A − X2
B − Y 2

B

, C = ψ(XA, YA) − 1
2
Ω

(
X2

A + Y 2
A

)
(2.3)

where A and B are any two convenient locations on the vortex boundary. The
numerical method used is essentially the iterative scheme employed by Pierrehumbert
(1980) and Dritschel (1985) to which the reader should refer for details. Where we
differ is in the choice of a new vortex shape, and rather than linearizing equation (2.1)
about a good guess for the boundary shape (in order to determine the correction to
this shape), we employ the streamlines of the flow in a co-rotating reference frame
for advancing to successive steps in the iteration. A reasonable initial guess for the
boundary shape of a uniform vortex could simply be made by choosing one of the
streamlines close to (and outside) the boundary of a previous solution. We then
compute the co-rotating stream function due to the new vortical flow field, using
equations (2.1)–(2.3). The streamline which minimizes the area difference compared
with the starting boundary shape is chosen as the boundary shape for the following
iteration, and typically we found that after 6–8 iterations the solution converged
such that the relative difference in the area between two successive solutions fell
below 10−4. The domain was uniformly discretized, with the grid spacing being one
hundredth of the distance between the vortices.

By stepping from one steady shape to another, using the simple approach outlined
above, our vortex patches are gradually enlarged, as shown in figure 3. The co-
rotating vortex configurations (a and b) are in precise agreement with the shapes
computed by Saffman & Szeto (1980) (the cases they list as h = 1.5 and h = 0.95). We
subsequently also find the limiting case where the two vortices remain as separate
entities, but they just touch at a single point, shown as the ‘critical vortex pair’ in
(c) of figure 3. (The area of this shape is found to be A/2b2 = 0.3122, which is in
precise agreement with the computations of Kamm (1987) and Saffman (1988); see
figure 9.6–1 in Saffman (1992)). The boundary of this critical vortex pair coincides
with the separatrix (streamline 2 in figure 2) which separates the inner core region
of the flow from the inner recirculation region. We stopped the computations at
this point, under the apprehension that this was indeed the largest steady vortex
which could be computed in this family. However, as we also plotted the co-rotating
streamline pattern for each case we were able to observe that streamlines, even larger
than the critical vortex pair, could perhaps deliver steady vortex configurations, more
representative of the symmetric diffused vortices in experiment. We thus extended our
study beyond the critical streamline 2, to include such streamlines as 3 (see figure 2).
This exploration led us to define new steady shapes such as the dumb-bell, typified by
the simply connected vortex patches in (d) and (e) of figure 3. As the exploration of
these new shapes progressed, the thin region connecting the two lobes of the dumb-bell
widened out, and the concave boundary of this region flattens out, ultimately giving
the limiting shape of the dumb-bells as the ‘sausage’ shape (f ). What is interesting
also is that by continuing beyond the sausage, one arrives at a precise ellipse (shape g)
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Figure 3. Shapes of the equilibrium solutions and co-rotating streamlines. The boundaries
of the solutions are a streamline in a reference frame rotating with the vortices.
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Figure 4. Limiting equilibrium solutions and co-rotating streamlines for (a) two touching
co-rotating vortices (a critical vortex pair) and (b) a simply connected patch of vorticity
(limiting cat’s-eye vortex patch). Limiting shapes have 90◦ corners, and coincide with the
separatrices of the co-rotating stream function. All separatrices are shown in bold lines.

of aspect ratio L/h= 4.613, which, although surprising initially, actually ties in well
with a previous result of Kamm (1987) and Saffman (1988) (described below).

The limiting case for the whole family of solutions ultimately becomes a ‘cat’s-eye’
shape, as shown by vortex (h). In an analogous manner to the limiting ‘critical vortex
pair’, the boundary of this vortex coincides with the separatrix 4 of the streamline
pattern (see figure 2) which separates the inner region from the outer recirculation
region. These limiting vortex solutions, whose boundaries form the separatrices of
their streamline patterns, are shown in greater detail in figure 4. Beyond the cat’s-eye
shape, any equilibrium solution, if it existed, would have to include uniform vorticity
which extended all the way round the outer recirculation region. No equilibria were
found beyond the cat’s eye. The principal dimensions for these different shapes,
making up this family of vortices, are included in table 1.

The coincidence of the boundary of the limiting vortex shape and the separatrix
which separates the inner–outer flow regions appears to be a general property for
other equilibrium solutions of m-polygonal symmetry. Vortices with such symmetries
have been computed by Deem & Zabusky (1978), who discovered a whole set of
what they call “V-states”, or families of uniform vortices with m-polygonal symmetry,



A family of vortices related to configurations before merging 225

L/h h0/h 2L/b R/b A/2b2 Ω/ω

(a) Vortex pair 3.8603 – 1.3813 0.1870 0.1099 0.0359
(b) Vortex pair 3.3506 – 1.6935 0.2969 0.2769 0.0912
(c) Critical vortex pair 3.7555 0.0 1.8124 0.3152 0.3122 0.1078
(d) Dumb-bell 4.0044 0.2173 1.8356 0.3114 0.3047 0.1097
(e) Dumb-bell 4.3781 0.4975 1.9290 0.3233 0.3283 0.1154
(f ) Critical dumb-bell ‘Sausage’ 5.2711 1.0 2.2202 0.3611 0.4097 0.1368
(g) Ellipse 4.6116 1.0 2.3556 0.3876 0.4720 0.1465
(h) Limiting shape: ‘cat’s eye’ 4.2431 1.0 2.5416 0.4157 0.5428 0.1556

2L

b

2h2h0

Table 1. Properties of the equilibrium solutions.

Figure 5. Limiting equilibrium solutions and co-rotating streamlines for a uniform patch
(shaded region) with three-fold polygonal symmetry. This limiting shape (defined by the bold
lines) has 90◦ corners, and coincides with the separatrix of the co-rotating stream function.
Separatrices are shown as bold lines.

having three sides, four sides, etc. We have also computed the limiting (largest) shape,
in the case of m =3 (previously computed by Wu, Overman & Zabusky (1984), and
by Overman (1986). We employed one of their equilibrium shapes as a starting point
for our iterative scheme), and exhibit this result in figure 5. In our case, we have,
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Figure 6. Solution paths for the co-rotating vortex pair and the single rotating vortex. In
(a) the different parts of the path corresponding to either two distinct vortices or to a single
patch are shown, together with the limiting cases. The point at which our solutions bifurcate
from the Kirchhoff ellipses is also shown. In (b) the path of our computed solution is compared
to all the previously computed paths for a single rotating vortex, as computed by Wu et al.
(1984). There appears to be an envelope that embraces all the limiting shapes with m-polygonal
symmetry.

as a part of our approach, also found the streamlines of the co-rotating reference
frame, and one can see that the limiting shape boundary does indeed coincide with
the separatrix streamline, bounding an inner flow region from an outer one. Such
boundaries also have 90◦ corners, which is consistent with the studies of Saffman &
Szeto (1981) and Pullin (1992), and also follows the study of Overman (1986), who
proved that such vortex patches can only have corners with angles of of either 90◦ or
0◦ (the latter being cusps).

The manner in which this family of uniform-vortex solutions corresponds with
previous studies of equilibrium solutions is of interest. For this discussion, we shall
refer to the plane of the vortex area (A/πL2) versus rotational velocity of the vortex
shape (Ω/ω), in figure 6. The present family of vortex shapes in figure 6(a) starts at
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the origin, representing a pair of point vortices, passes through the regime of vortex
pair configurations, to the critical vortex pair where the two vortices touch at a point
(shown with a symbol), then passes across the curve that represents ellipses, and
finally reaches the point in the plane corresponding to the limiting cat’s-eye shape.
If we look at figure 6(b), we can see that the horizontal upper boundary of the plot
represents Rankine (circular) vortices of uniform vorticity, for which A/πL2 = 1. The
curve for the Kirchhoff elliptic vortices starts at this upper boundary, and gradually,
as the aspect ratio of the vortex increases, this curve approaches the origin, in which
case the Kirchhoff ellipse becomes a vortex sheet of length 2L, as noted by Batchelor
(1967).

The location at which our family curve passes across the ellipse family curve is
particularly interesting. The stability analysis of Moore & Saffman (1971) shows that
one expects an infinite number of bifurcations, for disturbances which have n-fold
symmetry relative to the elliptic vortex, each bifurcation occurring for a particular
value of aspect ratio (L/h). In fact, Kamm (1987) went on to find the first three
of these bifurcations in the vicinity of the ellipse solutions; namely for aspect ratio
L/h= 3.0 (which confirms a classic result of Love 1893), for aspect ratio L/h= 4.611
and for L/h= 6.197. These bifurcations correspond to disturbances with n= 3, 4, 5.
Our curve of solutions, in the plane of A/πL2 versus Ω/ω, in figure 6, passes
across the ellipse curve at precisely the n= 4 bifurcation found by Kamm (1987) and
Saffman (1988), at which point we compute the aspect ratio to be L/h= 4.613. This
is consistent with the fact that this bifurcation is transcritical, thus admitting such
a solution curve that cuts across the ellipse curve in the manner here, whereas the
n= 3 and 5 cases are subcritical pitchfork bifurcations. It is also consistent with the
fact that, either side of the ellipse curve, our family of shapes evidently conforms to
a 4-fold perturbation to an ellipse.

The limiting case of our family of shapes appears to be in the same class of vortices
as the limiting shapes (also included in figure 6) computed by Wu et al. (1984) for
the m = 3, 4, 5 and 6-fold symmetric ‘V-states’ previously found in Deem & Zabusky
(1978) (limiting shapes which have three sides, four sides, etc.). The m =3–6 branches,
as shown in figure 6, arise out of bifurcations from the Rankine vortex, although our
family of solutions arises in quite a different manner. However, all of these shapes,
including our cat’s-eye vortex have polygonal symmetry with 90◦ corners. One can
deduce a best-fit curve through the m =3–6 data in figure 6 (including the origin,
and also the point (A/πL2 = 1; Ω/ω = 0.5), which represents a perturbation to the
Rankine vortex when m → ∞):

A

πL2
= 1.173

Ω

ω
+ 1.662

(
Ω

ω

)2

. (2.4)

The curve passes precisely through our limiting cat’s-eye shape, which further
suggests that our limiting vortex is the m =2 case corresponding to the limiting
solutions m = 3–6 found by Wu et al. (1984).

3. Concluding remarks
In summary, we have discovered a new family of equilibrium uniform-vorticity

configurations, guided by the simple approach that the boundaries of these shapes
must be streamlines in the co-rotating reference frame. The key to finding these shapes
has been, for each vortex patch, to plot a set of flow streamlines, which naturally
then suggests the choice of a further equilibrium vortex shape, thereby enlarging the
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family of solutions. Our exploration of these vortices has therefore been firmly based
on the physical flow dynamics.

Our family of vortex shapes starts with the vortex pair configurations which are
agreement with previous studies (Saffman & Szeto 1980; Overman & Zabusky 1982;
Dritschel 1985). We have found that the limiting case of the two vortex problem is
where they touch at a point, in a critical vortex pair configuration. However, triggered
by experimental observations, where the physical vortices actually diffuse into a dumb-
bell vortex before the two vortices are pushed together in the convective merging
stage, we have discovered from our computations that such uniform-vorticity dumb-
bell configurations exist, whose shapes are similar to those found experimentally. Of
course, in the real situation, the vorticity is distributed non-uniformly and filaments
are always visible, if one considers sufficiently small levels of vorticity (Le Dizes &
Verga 2002). However, the succession of vortices passing from vortex pairs to dumb-
bells approximately represents the temporal change of vortex shape as the real vortices
diffuse before convective merger.

For shapes larger than the dumb-bells, the family of vortex solutions includes
an ellipse, which is precisely the elliptic vortex shape for which Kamm (1987) and
Saffman (1988) found a transcritical bifurcation of n= 4 perturbation symmetry for
the set of ellipses. Further along the family of vortices, by varying our parameters,
we reach a limiting shape, beyond which there is no further solution, and this takes
on the form of a cat’s eye. This appears to be the m = 2 case, corresponding with the
m > 2 limiting shapes found by Wu et al. (1984), all of which have corners of 90◦,
and which represent the ends of the families of m-fold polygonal ‘V-states’ found by
Deem & Zabusky (1978).

It would be interesting to study the stability of our vortex shapes including the
dumb-bell shapes. However, the stability analysis, for the vortex pair configurations,
has been conducted by Dritschel (1985), and also by Saffman & Szeto (1980), who
used an energy argument. Dritschel deduced that vortex pairs whose area exceeds a
certain value (A/2b2 > 0.3096), were unstable. This type of result, and the inviscid
simulations of Overman & Zabusky (1982), and others, suggest that one might expect
vortices to start to convectively merge and come together at this point. However, one
might note that in experiments, the vortices are distributed (with well-defined vorticity
peaks) rather than uniform patches. We observe the vortices to evolve all the way to
symmetric dumb-bell shapes before they start the deformation process, the generation
of filaments, and the corresponding convective merger, where the vortices are pushed
together by the action of the antisymmetric vorticity (Cerretelli & Williamson 2003).

As a final point, it is intriguing to note that Kamm (1987), using an energy
argument, found that some shapes, comprising those from the ellipse bifurcation
towards the ‘sausage’ critical dumb-bell shape, are stable. Therefore it is possible
that a range (or all) of the dumb-bell shapes are stable, despite the fact that the
largest of the vortex pair configurations appear to become unstable (A/2b2 > 0.3121),
using similar energy considerations. A stability analysis for the whole family of vortex
shapes in this paper would be enlightening.
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